regex-dna benchmark N=10,000

Each chart bar shows how many times slower, one ↓ regex-dna program was, compared to the fastest program.

These are not the only programs that could be written. These are not the only compilers and interpreters. These are not the only programming languages.

Column × shows how many times more each program used compared to the benchmark program that used least.

     sortsortsort
  ×   Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load
1.0Python 2 #5 0.030.03?501  0% 100% 0% 0%
1.0Python 2 #5 0.030.03?501  0% 0% 100% 0%
1.1Python 2 #5 0.030.04?501  0% 0% 25% 100%
1.5Python development version #5 0.050.05?524  20% 0% 0% 100%
1.5Python development version #5 0.050.05?524  0% 0% 100% 0%
1.5Python 3 #5 0.050.05?524  0% 100% 0% 0%
1.5Python 3 #5 0.050.05?524  0% 100% 0% 0%
1.5Cython #5 0.050.05?524  100% 0% 0% 0%
1.5Cython #5 0.050.05?524  0% 0% 100% 0%
1.6Cython #5 0.050.05?524  29% 29% 0% 100%
1.6Python 3 #5 0.050.05?524  17% 83% 0% 0%
2.1Python development version #5 0.060.07?524  17% 86% 25% 0%
2.4Pyston #5 0.080.08?501  0% 0% 0% 100%
2.5Pyston #5 0.080.08?501  13% 0% 0% 100%
2.5Pyston #5 0.080.08?501  11% 13% 0% 89%
2.7Python 2 0.090.16?612  31% 13% 7% 13%
3.1Python 2 0.100.16?612  13% 6% 31% 18%
3.3Cython 0.100.16?573  0% 13% 63% 19%
3.5Python 2 0.110.17?612  29% 12% 17% 39%
3.7Python 3 0.110.17?573  25% 13% 6% 19%
3.8Python development version 0.120.18?573  17% 6% 6% 41%
3.9Python development version 0.120.18?573  12% 17% 35% 6%
4.0Cython 0.130.18?573  50% 18% 11% 6%
4.2PyPy 2 #5 0.130.13?501  7% 93% 0% 0%
4.2PyPy 2 #5 0.130.13?501  0% 7% 100% 0%
4.3PyPy 2 #5 0.130.14?501  50% 7% 57% 0%
4.3Python development version 0.130.19?573  11% 40% 11% 16%
4.4Python 3 0.140.19?573  28% 53% 11% 15%
4.4Nuitka 0.140.19?573  11% 30% 22% 40%
4.4Python 3 0.140.19?573  16% 11% 50% 16%
4.5Cython 0.140.19?573  19% 16% 11% 50%
4.5PyPy 3 #5 0.140.14?524  0% 100% 0% 0%
4.5PyPy 3 #5 0.140.14?524  13% 0% 0% 100%
4.5PyPy 3 #5 0.140.14?524  13% 0% 0% 93%
4.5Nuitka 0.140.19?573  5% 11% 55% 15%
4.6Nuitka 0.140.20?573  16% 19% 11% 42%
6.5Pyston 0.200.2594,660612  71% 21% 35% 27%
6.8Pyston 0.210.2594,996612  12% 23% 16% 60%
7.1Pyston 0.220.2694,520612  15% 62% 11% 12%
10PyPy 2 0.310.27210,712612  19% 15% 75% 15%
11PyPy 2 0.330.29210,652612  27% 17% 17% 69%
11PyPy 2 0.340.30210,336612  77% 17% 17% 10%
17PyPy 3 0.520.4970,712573  14% 84% 12% 4%
17PyPy 3 0.530.5070,704573  18% 86% 10% 6%
17PyPy 3 0.540.5170,912573  14% 8% 84% 10%
23IronPython #5 0.700.7046,832501  3% 29% 44% 32%
23IronPython #5 0.730.7344,844501  8% 3% 100% 5%
24IronPython #5 0.730.7345,660501  5% 100% 3% 6%
108Jython #5 3.351.42176,284501  46% 92% 52% 57%
110Jython #5 3.401.41173,756501  50% 56% 52% 96%
119Jython #5 3.701.57190,872501  69% 52% 72% 64%
missing benchmark programs
Shedskin No program
Numba No program
MicroPython No program
Grumpy No program
Graal No program

 regex-dna benchmark : Match DNA 8-mers and substitute nucleotides for IUB codes

diff program output for this 100KB input file (generated with the fasta program N = 10000) with this output file to check your program is correct before contributing.

We are trying to show the performance of various programming language implementations - so we ask that contributed programs not only give the correct result, but also use the same algorithm to calculate that result.

We use FASTA files generated by the fasta benchmark as input for this benchmark. Note: the file may include both lowercase and uppercase codes.

Each program should

Revised BSD license

  Home   Conclusions   License   Play